Low-voltage shock-mitigated micro-electromechanical systems structure
نویسندگان
چکیده
منابع مشابه
Radio Frequency-micro Electromechanical System Switch with High Speed and Low Actuated Voltage
This paper presents a novel RF MEMS (Micro Electromechanical System) fixed-fixed switch for very fast switching. Using the obtained equations, the switching time depends on the stiffness and effective mass of the switch beam so that the switching time will be decreased by higher stiffness (spring constant) and lower effective mass. In new design, the suspension bridge is a three-layer beam so t...
متن کاملElectromechanical Considerations in Developing Low-Voltage RF MEMS Switches
This paper reports on the design, fabrication, and testing of a low-actuation voltage Microelectromechanical systems (MEMS) switch for high-frequency applications. The mechanical design of low spring-constant folded-suspension beams is presented first, and switches using these beams are demonstrated with measured actuation voltages of as low as 6 V. Furthermore, common nonidealities such as res...
متن کاملCellulose Electro-Active Paper: From Discovery to Technology Applications
*Correspondence: Heung Soo Kim, Department of Mechanical, Robotics and Energy Engineering, Dongguk University, 30 Pil-Dong 1-ga, Jung-Gu, Seoul 100-715, South Korea e-mail: [email protected] Cellulose electro-active paper (EAPap) is an attractive material of electro-active polymers family due to its smart characteristics. EAPap is thin cellulose film coated with metal electrodes on both sides. I...
متن کاملA Generalized Approach for the Control of Micro- Electromechanical Relays
MEMS (Micro-Electromechanical Systems) is an area of research and applications that is becoming increasingly popular. It's mainly concerned with integrating micro-mechanical transducers with micro-electronic circuits on common substrates, traditionally silicon, through micro-fabrication. Instead of traditionally having the transducer and the communicating (or control) circuit as two separate en...
متن کاملEstimation of pull-in instability voltage of Euler-Bernoulli micro beam by back propagation artificial neural network
The static pull-in instability of beam-type micro-electromechanical systems is theoretically investigated. Two engineering cases including cantilever and double cantilever micro-beam are considered. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017